Abstract

The state of the human eye's blood vessels is a crucial aspect in the diagnosis of ophthalmological illnesses. For many computer-aided diagnostic systems, precise retinal vessel segmentation is an essential job. However, it remains a difficult task due to the intricate vascular system of the eye. Although many different vascular segmentation techniques have already been presented, additional study is still required to address the problem of inadequate segmentation of thin and tiny vessels. In this work, we introduce the Spatial Attention U-Net (SAU-Net) modelwith harris hawks' optimization (HHO), a lightweight network that can be applied as a data augmentation technique to improve the efficiency of the existingannotated samples without the need of thousands of training instances for Retinal Blood Vessel and Optic Disc Segmentation. The SAU-Net-HHO implementation uses a spatially inferred attention map multiplied by the input feature map for adaptive feature enhancement. U-Net convolutional blocks have been replaced with structured dropout blocks in the proposed network to prevent overfitting. Data from both vascular extraction (DRIVE) and structured analysis of the retina (STARE) are used to evaluate SAU-Net-HHO performance. The results show that the proposed SAU-Net-HHO performs well on both datasets. Analysing the obtained results, an average of 98.5% accuracy and Specificity 96.7% was achieved for DRIVE dataset and 97.8% accuracy and specificity 94.5% for STARE dataset. The proposed method yields numerical results with average values that are on par with those of state-of-the-art methods. Visual inspection has revealed that the suggested method can segment thin and tiny vessels with greater accuracy than previous methods. It also demonstrates its potential for real-life clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.