Abstract

This study assesses spatial and temporal variation in environmental variables in relation to phytoplankton community size and composition in a typically eutrophic river reservoir (Hai River, northern China). The aim is to identify environmental parameters governing spatial and temporal differences in phytoplankton density and composition. Physicochemical parameters, including nutrient concentrations, were determined in monthly surface water samples from 2015. The average concentration of key eutrophication indexes (i.e., total phosphorous (TP: 0.24 ± 0.11 mg·L−1), total nitrogen (TN: 2.96 ± 1.60 mg·L−1), and Chlorophyll a (Chl a: 38.5 ± 11.5 mg·m−3)) substantially exceeded threshold values for eutrophic streams. Moreover, the eutrophication increased significantly downstream along the river reservoir as a consequence of an increasing fraction of agricultural and industrial land-use in the watershed. 103 phytoplankton species were identified, of which Chlorophyta was the dominated phylum (47 species), followed by Bacillariophyta (23 species) and Cyanophyta (18 species). No spatial difference in species distribution (ANOVA, p > 0.05) were found, while the temporal differences in species composition exhibited significant heterogeneity (ANOVA, p < 0.001). Phytoplankton abundance was highest in early summer (June and July), with maximum values increasing from 1.78 × 108 and 2.80 × 108 cells·L−1 in upstream and middle reaches, respectively, to 4.18 × 108 cells·L−1 furthest downstream. Cyanophyta, also known as Cyanobacteria and commonly referred to as blue-green algal, are known to constitute algae bloom in eutrophic systems. Common species are Microcystis marginata, Microcystis flos-aquae, and Oscillatoria sp. This was the dominant phyla during summer months, especially in the middle and lower reaches of the stream reservoir where it accounted for 88.9% of the phytoplankton community. Shannon weaver index (H’) and Pielous’s evenness index (J’) were extremely low (1.91–2.43 for H’ and 0.39–0.45 for J’) in samples collected from the lower part of the stream during the period of algal bloom, indicating an imbalance in the phytoplankton communities. Canonical correspondence analysis (CCA) indicated that water temperature (WT) and possible pH, along with nitrate (NO3-N) and nitrite (NO2-N), were the most important explanatory parameters in regard to phytoplankton composition. This research provides an understanding of the role of physicochemical water quality parameters in governing algal blooms and phytoplankton composition in river reservoirs.

Highlights

  • Eutrophication, manifested by severe algae blooms, is globally the most pervasive water quality challenge [1,2,3]

  • In order to understand the conceptual mechanisms governing eutrophication there is a need for qualitative information of phytoplankton community structures

  • Cyanophyta constituted a large part of phytoplankton composition and abundance during the summer months

Read more

Summary

Introduction

Eutrophication, manifested by severe algae blooms, is globally the most pervasive water quality challenge [1,2,3] It perturbs ecosystem services of the aquatic systems and decreases biodiversity [3,4,5]. In order to understand the conceptual mechanisms governing eutrophication there is a need for qualitative information of phytoplankton community structures River reservoirs, being both a river and a reservoir, are commonly used for water supply, flood control, irrigation as well as hydroelectric power generation [10,11]. These dammed rivers are generally characterized by great lengths, slow water flow velocity and long hydraulic residence time [12,13]. Wang et al found that 21.4% of 14 river reservoirs in the Yangtze basin were eutrophic [15]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call