Abstract
The surface uplift of mountain belts caused by tectonism plays an important role in determining the long-term climate evolution of the Earth. However, the general lack of information on the paleotopography of mountain belts limits our ability to identify the links and feedbacks between topography, tectonics, and climate change on geologic time-scales. Here, we present a δ 1 8 O and δD record of authigenic minerals for the northern Great Basin that captures the timing and magnitude of regional surface uplift and subsidence events in the western United States during the Cenozoic. Authigenic calcite, smectite, and chert δ 1 8 O values suggest the northern Great Basin region experienced ∼2km of surface uplift between the middle Eocene and early Oligocene followed by ∼1 to 2km of surface subsidence in the southern Great Basin and/or Sierra Nevada since the middle Miocene. These data when combined with previously published work show that the surface uplift history varied in both space and time. Surface uplift migrated from north to south with high elevations in southern British Columbia and northeastern Washington in the middle Eocene and development of surface uplift in north and central Nevada in the Oligocene. This pattern of north to south surface uplift is similar to the timing of magmatism in the western Cordillera, a result that supports tectonic models linking magamtism with removal of mantle lithosphere and/or a subducting slab.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.