Abstract

The mid Hudson River is a heterotrophic system where allochthonous inputs apparently fuel the largest proportion of secondary production and ecosystem metabolism. We have analyzed a 6-yr dataset collected quarterly at six stations spanning a 150-km reach to assess variability at inter- and intra-annual time scales and regional spatial scales. The major components of the lower food web: bacterial biomass, detrital particulate organic carbon (POC), and dissolved organic carbon (DOC), show surprisingly discordant patterns in temporal and spatial variability. Bacterial abundance shows significant variability at all three scales, but the interannual variability is by far the greatest. DOC concentrations showed greatest variability among years, with intra-annual and spatial variability roughly equal. Freshwater flow is commonly considered a major driving force in river-estuarine variability but simple discharge was not a strong predictor of any component of suspended matter or DOC. For organisms in the Hudson River food web, these multiple scales of variability indicate highly unpredictable food resources in time and space, and these fluctuations may contribute to the variability in higher trophic levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call