Abstract
The swap in abundance between two Calanus species in the North Sea during the 1980s constitutes a quintessential example of regime shift, with important ecosystemic and economic repercussions because these copepods constitute a major component of the diet of larval and juvenile cods. It is hypothesized that this transition was driven by gradual changes in primary productivity, the North Atlantic Oscillation (NAO) and sea surface temperatures (SST), and yet how these factors contribute to the population dynamics of these two species and the overall regime shift remains unclear. Here, we combine a highly resolved and spatially structured longitudinal dataset with population dynamics theory-based models to obtain a thorough and more detailed description of populations' responses to the regime shift observed in the North Sea. Our analyses highlight that this transition exhibits a clear spatial structure and involved a decoupling between the dynamics of Calanus finmarchicus and the NAO in western regions and between Calanus helgolandicus and SST in the eastern regions of the North Sea. Consequently, the observed switch in abundance between these species reflects the interaction between species-specific attributes, a well-defined spatial structure with a marked east-west axis and a decoupling between the ecological drivers and Calanus population dynamics following the shift. Succinctly, we suspect that higher water temperatures have favored C. helgolandicus and resulted in restrictive conditions for C. finmarchicus, eventually overshadowing the effects of NAO detected in historical records. Overall, our study illustrates how population dynamics theory can be successfully employed to disentangle the complex and multifactorial nature of a regime shift in response to gradually changing environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.