Abstract

Density-dependent variations in body growth and size have important consequences for the population dynamics of stream-dwelling salmonid populations, since body size is related to a variety of ecologically relevant characteristics. These include survival and fecundity, competitive and predatory abilities, and foraging behavior. However, little work has been done to understand how density-dependent body growth varies across temporal and spatial scales and when this compensatory process is relevant for recruitment and population dynamics of stream- dwelling salmonids. Increased intra- or inter-cohort competition reduces growth rates of juveniles. Both within- and among-cohort differences at the juvenile stage are likely to be maintained through the lifetime. Limited movement or dispersal can lead to subdivision of a population into several local populations with independent dynamics. The spatial and temporal variation in movement and the patchy distribution of resources make fish likely to experience density- dependence across location, life-stage, and season. The relaxation of density-dependent suppression of body growth at low densities constitutes a potential mechanism for salmonids to persist in the face of environmental perturbation and may contribute to explaining the peculiar resilience to population col- lapses often showed by salmonids. The inclusion of density-dependent growth in population models may increase the usefulness of model predictions in management contexts. Models not accounting for density-dependent growth may underestimate the recovery potential of resident salmonid populations when they collapse to low densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.