Abstract

AbstractDensity dependence is likely to act as a regulatory mechanism in fish stocks that are recovering from overfishing. In general, density dependence in fish stocks is assumed to only occur in reproduction and early life stages and is therefore usually modelled as a stock‐recruitment relationship. Recent research shows that density dependence can also reduce individual growth in body size later in life. In this study, we show how optimal fishing effort changes with the strength of density dependence in individual growth for four stocks of North Sea flatfish species. Using size‐structured population models we show that density dependence arises due to a mechanistic link between the resource availability and life history processes at the individual level. We furthermore show that the stock response to harvesting is either driven by changes in individual reproduction when density dependence in individual growth is weak or by changes in individual growth rate when individual growth is strongly affected by density dependence. These two types or regimes are separated by a sudden shift in dynamics. It is therefore of great importance to account for density dependence in growth when managing fish stocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call