Abstract

Forest soils are recognized as sources and sinks of greenhouse gases (GHG) (CO2, CH4, N2O), but there are limited data quantifying the magnitude of GHG fluxes at the soil-atmosphere interface across a range of landscape hydrogeomorphic conditions. In our study, GHG fluxes were measured in a forested watershed across a range of hydrogeomorphic locations (wetlands, hillslopes, riparian zones, etc) and evaluated in relation to temperature, antecedent flow conditions, and stream chemistry to help develop strategies to scale GHG emissions from the point scale to the watershed scale. Mean study period CO2 fluxes (0.61 to 2.89 gCm-2d-1) were positive at all sites, with larger fluxes occurring in well-drained soils. Negative fluxes (CH4 sinks) were found at the hillslope and lowland sites, while the wetland was a large source of CH4 emissions at the watershed scale. Mean CH4 fluxes ranged from -2.53 to 330.34 mgCm-2d-1. Nitrous oxide fluxes were low relative to other GHG fluxes (in terms of CO2 equivalent) and ranged between -0.72 to 0.70 mgNm-2d-1. Although carbon dioxide fluxes were positively correlated to soil temperature at all locations, CH4 and N2O fluxes were not significantly related to temperature, antecedent flow conditions, or stream chemistry at the watershed scale. However, strong differences in CO2 and CH4 fluxes related to landscape geomorphology were observed, and exceeded the magnitude of seasonal variations for CO2 and CH4 fluxes, suggesting that landscape hydrogeomorphology was likely a stronger predictor of GHG fluxes at the watershed scale than temperature and stream chemistry variables, at least within the confine of one watershed. In lieu of statistical approaches relying on environmental variables to predict GHG fluxes at the watershed scale, geomorphological approaches, potentially coupled with seasonal comparisons of GHG fluxes in each land class, might therefore be a promising research avenue to provide solid watershed wide estimates of GHG fluxes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call