Abstract
AbstractIntroductionFarmlands are key sources of greenhouse gas (GHG) emissions, which are susceptible to changes in precipitation regimes. The soils of seasonal fallow contribute approximately half of annual GHG emissions from farmlands, but the effect of precipitation frequency on soil GHG emissions from seasonal fallow croplands remains virtually unknown.Materials and MethodsWe conducted a microcosm study to evaluate the response of nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2) fluxes from typical paddy and upland soils to the changes in watering frequency simulating precipitation scenarios of subtropical regions during seasonal fallow. We also analyzed changes of soil properties and biotic characteristics associated with GHG emissions, including abundances of soil denitrifiers (nirK, nirS, nosZI and nosZII genes), methanotrophs (pmoA gene) and methanogens (mcrA gene) to altered watering frequency.ResultsIncreased watering frequency led to overall increases in soil N2O and CO2 fluxes compared with low frequency. Compared with low frequency, high watering frequency decreased CH4 flux from the paddy soil by 3.5 times, while enhanced CH4 flux from the upland soil by 60%. Furthermore, the increased watering frequency had positive effects on cumulative N2O and CO2 fluxes from the upland soil, whereas no similar trend was observed for the paddy soil. Hierarchical partitioning analyses showed that N2O fluxes from the paddy soil were mostly related to nitrogen availability, and mcrA gene abundance had more than 90% of relative independent effects on CH4 and CO2 fluxes from the paddy soil. For the upland soil, nosZ (60.34%), pmoA (53.18%) and nir (47.07%) gene abundances were important predictors of N2O, CH4 and CO2 fluxes, respectively.ConclusionOur results demonstrate that increased watering frequency facilitates GHG emissions by changing soil properties and functional gene abundances. These findings provide new insights into GHG fluxes from seasonal fallow croplands in response to altered precipitation patterns.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Sustainable Agriculture and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.