Abstract

Urban spatial elements present agglomeration and dispersion geographic processes in the urban development. Identifying the characteristics of their distribution changes and accurately capturing the evolution of the urban spatial structure is of great significance to urban construction and management. This study takes Wuhan as a case study and focuses on the spatial agglomeration distribution of urban elements. Point of Interest (POI) data from 2017 to 2021 were collected, and the Block2Vec model was employed to extract the comprehensive geographic information from various elements within the traffic analysis zones (TAZs). Subsequently, identification and division were carried out to access the level of urban spatial element agglomeration. Finally, the spatial–temporal evolution characteristics of urban aggregated elements in the Wuhan metropolitan development area over five years were compared and analyzed. The results indicate the following: (1) urban elements present an obvious circle structure in their spatial agglomeration, with distinct differences observed among different element types; (2) from 2017 to 2021, the Wuhan urban development zone experienced obvious expansion in urban space; (3) increased agglomeration of spatial elements mainly occurred in the surrounding areas of the city, while some areas in the city center displayed weaker element agglomeration and a reduction in various service facilities. The results demonstrate that the method used in this study could effectively identify the spatial agglomeration distribution of urban elements, as well as accurately distinguishing regions with distinct development characteristics. This approach could provide robust support for optimizing land use and urban spatial planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call