Abstract

To mitigate greenhouse gas (GHG) emissions from the wastewater treatment industry, it is crucial to explore GHG emission patterns and propose useful measures. In this study, we use the Kaya model and LMDI decomposition method to analyze the changes in GHG emissions from urban domestic wastewater treatment at the provincial level and further explore the distribution characteristics and driving factors of urban domestic wastewater treatment GHG emissions across various years and regions. The results indicate the following: (1) In the temporal dimension, urban domestic wastewater treatment GHG emissions are increasing, from 21.0 MtCO2 in 2011 to 27.1 MtCO2 in 2020, with an average annual growth rate of 2.88%. The spatial distribution is high in the southeast and low in the northwest. There is variability in the spatial evolution trend of GHG emissions by province, with the growth rate becoming slower or even negative in Jiangsu, Zhejiang, and North China, while the average annual growth rate exceeds 25% in Inner Mongolia and Xinjiang. (2) According to the decomposition results of driving factors, economic scale is the dominant positive driver, and the positive contributions of TI and the population effect are limited. The sludge disposal structure is the main negative driver, and the EEI and technology have restricted negative contributions. (3) Based on the decomposition results, for major coastal GHG emitters, such as Guangdong and Shandong, it is necessary to invest capital and technology to continuously upgrade the wastewater treatment process and reduce non-CO2 emissions. Along with adopting circular economy schemes, local governments in the northwestern region should transform the traditional sludge disposal structure and optimize the power supply structure to increase carbon offset and reduce CO2 emissions. The findings suggest a low-carbon transformation path to support the industry's dual carbon goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call