Abstract

The origins and spatial and temporal distributions of air pollutants (PM2.5, PM10, CO, SO2, NO2 and O3) during May to June of 2015 were investigated using data from 1490 monitoring sites in China. Aerosol number concentrations and meteorological data from Shijiazhuang, Nanjing, and Suzhou were combined with the MIX Asian emission data and the HYSPLIT model. Furthermore, the diurnal variation, size distribution, and main sources of air pollutants and aerosols were selectively characterized in the North China Plain (NCP) and the Yangtze River Delta (YRD). High values of particulate matter concentrations (PM), including PM2.5 and PM10, occurred in the northwestern and central regions of eastern China. Elevated PM2.5 and PM10 concentrations represented natural dust sources and anthropogenic resident, power plant, industry, and traffic emissions sources, respectively. The concentrated distributions of SO2 were similar to those of PM. The CO concentrations were distributed uniformly in China. High O3 values occurred above the Qinghai province. During the observation period, the air masses mainly originated from the northwest NCP and from the southwest or northeastern ocean in the YRD, resulting in high concentrations of PM2.5, PM10, SO2, and CO in the NCP, the average values of which were 61.8±40.0, 118.8±66.4, 24.1±24.6μgm-3, and 1.2±0.9mgm-3, respectively, and were 1.2, 1.4, 1.5, and 1.3 times larger than those in the YRD. NO2 had higher concentrations in the YRD with an average of 43.7±24.8μgm-3, which was 1.2 times larger than that in the NCP. The diurnal variations of PM, NO2 and CO had bimodal distributions and SO2 and O3 had unimodal distributions in the NCP and YRD. The aerosol number concentrations had average values of 12,661±5266, 11,189±5905, and 12,797±5931cm-3 in Shijiazhuang, Nanjing, and Suzhou. Their diurnal variations displayed trimodal peaks at 18:00-21:00, 11:00-14:00, and 06:00-08:00, and their spectra distributions were all unimodal with peaks at 60-70, 60-70, and 100-110nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.