Abstract

In this research, the SWAT+ model was employed to elucidate hydrological dynamics within the Beas Basin. The primary objectives encompassed the calibration of the SWAT model for accurate water balance quantification, annual simulation of salient hydrological components, and a decadal analysis of trends in fluvial discharge and sediment transport. The methodology encompasses simulating hydrological data with the SWAT+ model, followed by calibration and validation using flow data from Larji and Mahadev hydroelectric plants. The model’s efficacy in depicting streamflow and other hydrological components is corroborated by statistical measures such as the Nash–Sutcliffe efficiency and PBIAS. The water balance analysis delivers insights into the basin’s hydrological characteristics, including surface flow, water yield, and evapotranspiration. The temporal analysis exposes intricate seasonal and interannual variability in flow and sediment discharge, while spatial distribution highlights heterogeneity across the basin. These findings have practical implications for water resource management, including optimizing water allocation, hydroelectric power generation, irrigation, and environmental concerns. Limitations, such as data quality and model simplifications, are acknowledged, and future data collection and observations are recommended for improved model performance. In essence, these researches enhance understanding of the Beas Basin’s hydrology, setting a course for future investigations to integrate more data sources, refine model parameters, and consider climate and land-use changes for a richer comprehension of the basin’s hydrological dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call