Abstract

Weekly high-volume air samples were collected between 2000 and 2003 at six Arctic sites, i.e., Alert, Kinngait, and Little Fox Lake (LFL) in Canada, Point Barrow in Alaska, Valkarkai in Russia, and Zeppelin in Norway. Hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were quantified in all samples. Comparison showed that alpha-HCH and HCB were homogeneously distributed in the circumpolar atmosphere and uniform throughout the seasons. However, significantly higher atmospheric concentrations of alpha-HCH and HCB and strongertemperature dependence of alpha-HCH and gamma-HCH were found at LFL in Yukon (YK), which is unique among the sites by virtue of its high altitude and low latitude, resulting in higher precipitation rates and summer temperatures. Strong temperature dependence of alpha- and gamma-HCH at this location suggests that secondary emissions, i.e., re-evaporation from surfaces, were more important at this site than others. It is hypothesized that a higher precipitation rate at LFL facilitated the transfer of alpha-HCH from the atmosphere to surface media when technical HCH was still in use worldwide. On the other hand, higher temperature at LFL enhanced reevaporation to the atmosphere after the global ban of technical HCH. In contrast to alpha-HCH and HCB, larger spatial and seasonal differences were seen for gamma-HCH (a currently used pesticide), which likely reflect the influence of different primary contaminant sources on different Arctic locations. Fugacity ratios suggest a net deposition potential of HCB from air to seawater, whereas seawater/air exchange direction of alpha-HCH varies in the circumpolar environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.