Abstract
BackgroundBreast cancer is the most common cancer among women, and ultrasound is a usual tool for early screening. Nowadays, deep learning technique is applied as an auxiliary tool to provide the predictive results for doctors to decide whether to make further examinations or treatments. This study aimed to develop a hybrid learning approach for breast ultrasound classification by extracting more potential features from local and multi-center ultrasound data.MethodsWe proposed a hybrid learning approach to classify the breast tumors into benign and malignant. Three multi-center datasets (BUSI, BUS, OASBUD) were used to pretrain a model by federated learning, then every dataset was fine-tuned at local. The proposed model consisted of a convolutional neural network (CNN) and a graph neural network (GNN), aiming to extract features from images at a spatial level and from graphs at a geometric level. The input images are small-sized and free from pixel-level labels, and the input graphs are generated automatically in an unsupervised manner, which saves the costs of labor and memory space.ResultsThe classification AUCROC of our proposed method is 0.911, 0.871 and 0.767 for BUSI, BUS and OASBUD. The balanced accuracy is 87.6%, 85.2% and 61.4% respectively. The results show that our method outperforms conventional methods.ConclusionsOur hybrid approach can learn the inter-feature among multi-center data and the intra-feature of local data. It shows potential in aiding doctors for breast tumor classification in ultrasound at an early stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.