Abstract

The aim of this study was to explore the spatial and energy resolutions of a PET scanner that we have recently developed. The scanner, which consists of six detector modules with 1-layer LGSO crystals, has a hexagonal configuration with a faceto- face distance of 86.4 mm between two opposite PET modules; such properties facilitate the imaging of small animals. A <TEX>$^{22}Na$</TEX> point source was employed to estimate horizontal and vertical spatial resolutions. To assess the energy resolution, a uniform <TEX>$^{18}F$</TEX> cylindrical phantom was scanned. A software-based spectrum analysis of list-mode data was used to assign a local energy window centered on the photopeak position for every single crystal. For the image reconstruction, an ML-EM algorithm was used. The spatial resolutions at the center of the scanner were 0.99 mm in the horizontal direction and 1.13 mm in the vertical direction. The energy resolution averaged over each PMT ranged from 13.3%-14.3%, which gave an average value of 13.8%. These results show that this simple system is promising for small animal imaging with excellent spatial and energy resolutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call