Abstract
The internal oxidation (IO) and preferential intergranular oxidation (PIO) behavior of Alloy 600 depending on the dissolved hydrogen (DH) content and the IG Cr carbide in hydrogenated primary water were characterized in detail using analytical electron microscopy techniques. The oxidation layer was unstable when the DH concentration was such that Ni was in the vicinity of Ni/NiO equilibrium and it could easily be peeled off. Hence, the grain boundaries of the bare metal were attacked. PIO occurred and Cr-rich oxide identified as Cr2O3 was formed at the oxidized grain boundary. NiO emerged when the DH concentration was such that Ni was in an oxidizing state, whereas Ni enrichment occurred inside the oxidized grain boundary when the DH concentration was such that Ni was in a reducing state with respective to Ni/NiO equilibrium. The IG Cr carbide strongly affected the PIO behavior by means of the consumption of oxygen penetrating into the grain boundary. The depth of the IO layer decreased as the DH concentration increased. The different oxidation behaviors depending on the DH content and IG Cr carbide are believed to affect the PWSCC resistance of Alloy 600 significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.