Abstract
Proper cell-cell and cell-ECM interactions are vital for cell migration and patterning of the vertebrate embryo. MMPs and their inhibitors, RECK and TIMPs, are all differentially expressed during embryogenesis to regulate such ECM remodeling and cell interactions. MT1-MMP, RECK, and TIMP-2 are unique amongst other ECM-regulating proteins as they act in the pericellular space. Past studies have shown that RECK and TIMP-2 interact with MT1-MMP on the cell surface, thereby influencing cell behaviour as well as the microenvironment immediately surrounding the cells. We investigated the localization of RECK, TIMP-2, and MT1-MMP proteins throughout early X. laevis development using immunohistochemistry. We found that during neural tube formation, axis elongation, and organogenesis, RECK, TIMP-2, and MT1-MMP proteins show highly similar localization patterns, particularly in the ectoderm and in the dorsal-ventral differentiation of the neural tube. Our data suggests they function together during patterning events in early Xenopus development.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have