Abstract
Horizontal angular resolution was measured in two bottlenose dolphins using a two-alternative forced-choice, biosonar target discrimination paradigm. The task required a stationary dolphin positioned in a hoop to discriminate two physical targets at a range of 4 m. The angle separating the targets was manipulated to estimate an angular discrimination threshold of 1.5°. In a second experiment, a similar two-target biosonar discrimination task was conducted with one free-swimming dolphin, to test whether its emission beam was a critical factor in discriminating the targets. The spatial separation between two targets was manipulated to measure a discrimination threshold of 6.7 cm. There was a relationship between differences in acoustic signals received at each target and the dolphin's performance. The results of the angular resolution experiment were in good agreement with measures of the minimum audible angle of both dolphins and humans and remarkably similar to measures of angular difference discrimination in echolocating dolphins, bats, and humans. The results suggest that horizontal auditory spatial acuity may be a common feature of the mammalian auditory system rather than a specialized feature exclusive to echolocating auditory predators.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have