Abstract

Mapping with unmanned aerial vehicles (UAVs) typically involves the deployment of ground control points (GCPs) to georeference the images and topographic model. An alternative approach is direct geo ref er encing, whereby the onboard Global Navigation Satellite System (GNSS) and inertial measurement unit are used without GCPs to locate and orient the data. This study compares the spatial accuracy of these approaches using two nearly identical UAVs. The onboard GNSS is the one difference between them, as one vehicle uses a survey-grade GNSS/RTK receiver (RTK UAV), while the other uses a lower-grade GPS receiver (non-RTK UAV). Field testing was performed at a gravel pit, with all ground measurements and aerial sur vey ing completed on the same day. Three sets of orthoimages and DSMs were produced for comparing spa tial accuracies: two sets were created by direct georeferencing images from the RTK UAV and non-RTK UAV and one set was created by using GCPs during the external orientation of the non-RTK UAV images. Spatial accuracy was determined from the horizontal (X,Y) and vertical (Z) residuals and root-mean-square-errors (RMSE) relative to 17 horizontal and 180 vertical check points measured with a GNSS/RTK base station and rover. For the two direct georeferencing datasets, the horizontal and vertical accuracy improved substantially with the survey-grade GNSS/RTK receiver onboard the RTK UAV, effectively reducing the RMSE values in X, Y and Z by 1 to 2 orders of magnitude compared to the lower grade GPS receiver onboard the non-RTK UAV. Importantly, the horizontal accuracy of the RTK UAV data processed via direct georeferencing was equivalent to the horizontal accuracy of the non-RTK UAV data processed with GCPs, but the vertical error of the DSM from the RTK UAV data was 2 to 3 times greater than the DSM from the non-RTK data with GCPs. Overall, results suggest that direct georeferencing with the RTK UAV can achieve horizontal accuracy comparable to that obtained with a network of GCPs, but for topographic meas urements requiring the highest achievable accuracy, researchers and practitioners should use GCPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.