Abstract

Super-resolution microscopy, as a powerful tool of seeing abundant spatial details, typically can only distinguish a few distinct targets at a time due to the spectral crosstalk between fluorophores. Spaser (i.e., surface plasmon laser) nanoprobes, which confine lasing emission into nanoscale, offer an opportunity to eliminate such obstacle. Here, realized is narrow band stimulated emission depletion (STED) nanoscopy on spaser nanoparticles by collecting the coherent spasing signals. Demonstrated are the physics concept and feasibility of erasing spaser emission by using a depletion beam to suppress the population inversion, which lays the foundation of spaser-based STED super-resolution. Thanks to the small size (47 nm) and narrow spectral linewidth (3.8 nm) of the spaser nanoparticles, a 74 nm spatial resolution in STED imaging within an acquisition bandwidth of 10 nm is finally obtained. These spaser nanoparticles, if multiplexing with different wavelengths, in principle, allow for spectral-multiplexed imaging, sensing, cytometry, and light operation of a large number of targets all at once.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.