Abstract

This paper presents a novel iterative greedy reconstruction algorithm for practical compressed sensing (CS), called the sparsity adaptive matching pursuit (SAMP). Compared with other state-of-the-art greedy algorithms, the most innovative feature of the SAMP is its capability of signal reconstruction without prior information of the sparsity. This makes it a promising candidate for many practical applications when the number of non-zero (significant) coefficients of a signal is not available. The proposed algorithm adopts a similar flavor of the EM algorithm, which alternatively estimates the sparsity and the true support set of the target signals. In fact, SAMP provides a generalized greedy reconstruction framework in which the orthogonal matching pursuit and the subspace pursuit can be viewed as its special cases. Such a connection also gives us an intuitive justification of trade-offs between computational complexity and reconstruction performance. While the SAMP offers a comparably theoretical guarantees as the best optimization-based approach, simulation results show that it outperforms many existing iterative algorithms, especially for compressible signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.