Abstract

This paper presents a correlation coefficient sparsity adaptive matching pursuit (CCSAMP) algorithm for practical compressed sensing (CS). The sparsity adaptive matching pursuit (SAMP) has been enhanced using the CCSAMP algorithm. The CCSAMP's capacity to accurately reconstruct the signal with fewer repetitions is its most novel characteristic when compared to other state-of-the-art SAMP enhancement methods. This makes it a candidate for many practical applications that need fast reconstruction. The proposed algorithm constructs two correlation vectors, which represent the input signals recovered from the support set and candidate set. The step size is transformed by their Pearson correlation coefficients (PCCS). Compared to the residual energy, the correlation coefficient is more sensitive. The CCSAMP reduces the number of iterations while maintaining the SAMP's capability of signal reconstruction without prior knowledge of the sparsity. Simulation shows that the CCSAMP can significantly reduce the number of iterations compared to the SAMP algorithm. The CCSAMP can be used for radar detection, radar 3D imaging, and other fields where fast and accurate reconstruction of signals is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.