Abstract

In many clinical applications, 3D mesh models of human anatomies are important tools for visualization, diagnosis, and treatment planning. Such 3D mesh models often have a high number of vertices to capture the complex shape, and processing these large meshes on readily available graphic cards can be a challenging task. To accommodate this, we present a sparse version of MeshCNN called SparseMeshCNN, which can process meshes with more than 60 000 edges. We further show that adding non-local attention in the network can mitigate the small receptive field and improve the results. The developed methodology was applied to separate the Left Atrial Appendage (LAA) from the Left Atrium (LA) on 3D mesh models constructed from medical images, but the method is general and can be put to use in any application within mesh classification or segmentation where memory can be a concern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.