Abstract

The objective functions used in spectral clustering are generally composed of two terms: i) a term that minimizes the local quadratic variation of the cluster assignments on the graph and; ii) a term that balances the clustering partition and helps avoiding degenerate solutions. This paper shows that a graph neural network, equipped with suitable message passing layers, can generate good cluster assignments by optimizing only a balancing term.Results on attributed graph datasets show the effectiveness of the proposed approach in terms of clustering performance and computation time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.