Abstract

In this work, a linear scaling explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12) is presented. By using the idea of a domain-based local pair natural orbital (DLPNO), computational scaling of the conventional NEVPT2-F12 is reduced to near-linear scaling. For low-lying excited states of organic molecules, the excitation energies predicted by DLPNO-NEVPT2-F12 are as accurate as the exact NEVPT2-F12 results. Some cluster models of rhodopsin are studied using the new algorithm. Our new method is able to study systems with more than 3300 basis functions and an active space containing 12 π-electrons and 12 π-orbitals. However, even larger calculations or active spaces would still be feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.