Abstract

The n-electron valence state perturbation theory makes use of zero-order wave functions whose energies are endowed with a direct physical interest, describing various processes occurring in the active space (removal/addition of one or two electrons, electronic excitations). It is shown that the zero-order energies related to the process of removal of an electron from the active space provide a reasonable and cheap approximation to the vertical ionization potentials. The zero-order energies referring to the process of an electronic excitation within the active space can also provide a first approximation to electronic transition energies, provided that a careful choice of the active molecular orbitals is performed. Test calculations have been carried out on the molecules N2 and H2CO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.