Abstract
In this paper, we formulate a mixed-integer problem for sparse signal reconstruction and reformulate it as a global optimization problem with a surrogate objective function subject to underdetermined linear equations. We propose a sparse signal reconstruction method based on collaborative neurodynamic optimization with multiple recurrent neural networks for scattered searches and a particle swarm optimization rule for repeated repositioning. We elaborate on experimental results to demonstrate the outperformance of the proposed approach against ten state-of-the-art algorithms for sparse signal reconstruction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.