Abstract

In our earlier work, we have explored the sparse representation classification (SRC) for language recognition (LR) task. In those works, the orthogonal matching pursuit (OMP) algorithm was used for sparse coding. In place of l 0 -norm minimization in the OMP algorithm, one could also use l l -norm minimization based sparse coding such as the least absolute shrinkage and selection operator (LASSO). Though leading to better sparse representation, the LASSO algorithm is quite latent in contrast to the OMP. This work explores the elastic net (ENet) sparse coding algorithm in SRC based LR framework. Unlike conventional sparse coding methods, the ENet employs both l 1 and l 2 constraints in regularizing the sparse solutions, thus is expected to yield improved sparse coding. The experiments are performed on NIST 2007 LRE data set in closed set condition on 30 seconds duration segments. Scores are calibrated using regularized multi-class logistic regression. For language representation, the utterances are mapped to the well-known i-vector representation and applied with the within-class covariance normalization (WCCN) based session/channel compensation. The proposed ENet based LR approach is noted to significantly outperform the other LR methods developed using existing sparse and non-sparse representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.