Abstract

We propose a generalized Sparse Representation-based Classification (SRC) algorithm for open set recognition where not all classes presented during testing are known during training. The SRC algorithm uses class reconstruction errors for classification. As most of the discriminative information for open set recognition is hidden in the tail part of the matched and sum of non-matched reconstruction error distributions, we model the tail of those two error distributions using the statistical Extreme Value Theory (EVT). Then we simplify the open set recognition problem into a set of hypothesis testing problems. The confidence scores corresponding to the tail distributions of a novel test sample are then fused to determine its identity. The effectiveness of the proposed method is demonstrated using four publicly available image and object classification datasets and it is shown that this method can perform significantly better than many competitive open set recognition algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.