Abstract
The theory of compressive sensing applies the sparse representation to the extraction of useful information from signals and brings a breakthrough to the theory of signal sampling. Based on compressive sensing, sparse representation-based classification (SRC) is proposed. SRC uses the compressibility of the image data to represent the facial image sparsely and could solve the problems of both massive calculation and information loss in dealing with signals. SRC does not, however, deal with the effects of variable illumination, posture and incomplete face image, which could result in severe performance degradation. This paper studies the differences between SRC recognition and human recognition. We find that there is an obvious disadvantage in the SRC algorithm, and it will significantly affect the face recognition performance in actual environment, especially for the variable illumination, posture and incomplete face image. To overcome the disadvantage of SRC algorithm, we propose an SRC-based twice face recognition algorithm named T_SRC. T_SRC uses bidirectional PCA, linear discriminant analysis and GradientFace to execute multichannel analysis, which could extract more "holistic/configural" face features in actual environment than by using SRC algorithm directly. Based on the multichannel analysis, we identify the test image by SRC firstly. Then, by analyzing the residual, this algorithm could decide whether the twice recognition is needed. If the twice recognition is needed, T_SRC extracts the facial details ("featural" face features) by the improved Harris point and Gabor filter detector. We suppose that the facial details are more stable than the whole face in actual environment, and later experiments verify our assumption. At last, this algorithm identifies the class of the test image by SRC again. The results of the experiments prove that the T_SRC algorithm has better recognition rate than SRC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.