Abstract
In this paper, we present a facial expression recognition method based on Gabor feature and sparse representation. Sparse Representation based Classification (SRC) has been widely used in computer vision and pattern recognition. And Gabor filter banks can be used to approximately model the signal processing in visual primary cortex. We believe that the nature of the attractive performance of SRC and Gabor feature lies in that they both followed the natures of signal perception of retina and information processing of cortex in human vision. Therefore, we combined the Gabor feature and SRC for facial expression recognition. The comparison experiments of proposed Gabor+SRC algorithm and straightforward SRC application are conducted on JAFFE database. And the experimental results showed the attractive performance of the proposed Gabor+SRC method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.