Abstract

We consider an underdetermined linear system of equations Ax = b with non-negative entries of A and b, and the solution x being also required to be non-negative. We show that if there exists a sufficiently sparse solution to this problem, it is necessarily unique. Furthermore, we present a greedy algorithm - a variant of the matching pursuit - that is guaranteed to find this sparse solution. The result mentioned above is obtained by extending the existing theoretical analysis of the basis pursuit problem, i.e. min ||x|| <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> s.t. Ax = b, by studying conditions for perfect recovery of sparse enough solutions. Considering a matrix A with arbitrary column norms, and an arbitrary monotone element-wise concave penalty replacing the lscr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -norm objective function, we generalize known equivalence results, and use those to derive the above uniqueness claim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.