Abstract

An underdetermined linear system of equations Ax = b with nonnegativity constraint x ges 0 is considered. It is shown that for matrices A with a row-span intersecting the positive orthant, if this problem admits a sufficiently sparse solution, it is necessarily unique. The bound on the required sparsity depends on a coherence property of the matrix A. This coherence measure can be improved by applying a conditioning stage on A, thereby strengthening the claimed result. The obtained uniqueness theorem relies on an extended theoretical analysis of the lscr0 - lscr1 equivalence developed here as well, considering a matrix A with arbitrary column norms, and an arbitrary monotone element-wise concave penalty replacing the lscr1-norm objective function. Finally, from a numerical point of view, a greedy algorithm-a variant of the matching pursuit-is presented, such that it is guaranteed to find this sparse solution. It is further shown how this algorithm can benefit from well-designed conditioning of A .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.