Abstract

Sparse adaptive filtering algorithms are utilized to exploit system sparsity as well as to mitigate interferences in many applications such as channel estimation and system identification. In order to improve the robustness of the sparse adaptive filtering, a novel adaptive filter is developed in this work by incorporating a correntropy-induced metric (CIM) constraint into the least logarithmic absolute difference (LLAD) algorithm. The CIM as an $$l_{0}$$l0-norm approximation exerts a zero attraction, and hence, the LLAD algorithm performs well with robustness against impulsive noises. Numerical simulation results show that the proposed algorithm may achieve much better performance than other robust and sparse adaptive filtering algorithms such as the least mean p-power algorithm with $$l_{1}$$l1-norm or reweighted $$l_{1}$$l1-norm constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.