Abstract

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a useful and versatile tool for surface analysis, enabling detailed compositional information to be obtained for the surfaces of diverse samples. Furthermore, in the case of two- or three-dimensional imaging, the measurement sensitivity in the higher molecular weight range can be improved by using a cluster ion source, thus further enriching the TOF-SIMS information. Therefore, appropriate analytical methods are required to interpret this TOF-SIMS data. This study explored the capabilities of a sparse autoencoder, a feature extraction method based on artificial neural networks, to process TOF-SIMS image data. The sparse autoencoder was applied to TOF-SIMS images of human skin keratinocytes to extract the distribution of endogenous intercellular lipids and externally penetrated drugs. The results were compared with those obtained using principal component analysis (PCA) and multivariate curve resolution (MCR), which are conventionally used for extracting features from TOF-SIMS data. This confirmed that the sparse autoencoder matches, and often betters, the feature extraction performance of conventional methods, while also offering greater flexibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call