Abstract
Sparse additive machines (SAMs) have shown competitive performance on variable selection and classification in high-dimensional data due to their representation flexibility and interpretability. However, the existing methods often employ the unbounded or nonsmooth functions as the surrogates of 0-1 classification loss, which may encounter the degraded performance for data with outliers. To alleviate this problem, we propose a robust classification method, named SAM with the correntropy-induced loss (CSAM), by integrating the correntropy-induced loss (C-loss), the data-dependent hypothesis space, and the weighted lq,1 -norm regularizer ( q ≥ 1 ) into additive machines. In theory, the generalization error bound is estimated via a novel error decomposition and the concentration estimation techniques, which shows that the convergence rate O(n-1/4) can be achieved under proper parameter conditions. In addition, the theoretical guarantee on variable selection consistency is analyzed. Experimental evaluations on both synthetic and real-world datasets consistently validate the effectiveness and robustness of the proposed approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have