Abstract

The estimation of kernel-smoothed relative risk functions is a useful approach to examining the spatial variation of disease risk. Though there exist several options for performing kernel density estimation in statistical software packages, there have been very few contributions to date that have focused on estimation of a relative risk function <em>per se</em>. Use of a variable or adaptive smoothing parameter for estimation of the individual densities has been shown to provide additional benefits in estimating relative risk and specific computational tools for this approach are essentially absent. Furthermore, little attention has been given to providing methods in available software for any kind of subsequent analysis with respect to an estimated risk function. To facilitate analyses in the field, the <b>R</b> package <b>sparr</b> is introduced, providing the ability to construct both fixed and adaptive kernel-smoothed densities and risk functions, identify statistically significant fluctuations in an estimated risk function through the use of asymptotic tolerance contours, and visualize these objects in flexible and attractive ways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.