Abstract

BackgroundWhen calculating the number of deaths attributable to alcohol consumption (i.e., the number of deaths that would not have occurred if everyone was a lifetime abstainer), alcohol consumption is most often modelled using a capped exposure distribution so that the maximum average daily consumption is 150 grams of pure alcohol. However, the effect of capping the exposure distribution on the estimated number of alcohol-attributable deaths has yet to be systematically evaluated. Thus, the aim of this article is to estimate the number of alcohol-attributable deaths by means of a capped and an uncapped gamma distribution and capped and uncapped relative risk functions using data from the European Union (EU) for 2004.MethodsSex- and disease-specific alcohol relative risks were obtained from the ongoing Global Burden of Disease, Comparative Risk Assessment Study. Adult per capita consumption estimates were obtained from the Global Information System on Alcohol and Health. Data on the prevalence of current drinkers, former drinkers, and lifetime abstainers by sex and age were obtained from various population surveys. Alcohol-attributable deaths were calculated using Alcohol-Attributable Fractions that were calculated using capped (at 150 grams of alcohol) and uncapped alcohol consumption distributions and capped and uncapped relative risk functions.ResultsAlcohol-attributable mortality in the EU may have been underestimated by 25.5% for men and 8.0% for women when using the capped alcohol consumption distribution and relative risk functions, amounting to the potential underestimation of over 23,000 and 1,100 deaths in 2004 in men and women respectively. Capping of the relative risk functions leads to an estimated 9,994 and 468 fewer deaths for men and for women respectively when using an uncapped gamma distribution to model alcohol consumption, accounting for slightly less than half of the potential underestimation.ConclusionsAlthough the distribution of drinkers in the population and the exact shape of the relative risk functions at large average daily alcohol consumption levels are not known, the findings of our study stress the importance of conducting further research to focus on exposure and risk in very heavy drinkers.

Highlights

  • When calculating the number of deaths attributable to alcohol consumption, alcohol consumption is most often modelled using a capped exposure distribution so that the maximum average daily consumption is 150 grams of pure alcohol

  • The method used in the 2005/2010 Comparative Risk Analysis (CRA) as part of the Global Burden of Disease (GBD) study to estimate Alcohol-Attributable Fractions (AAFs) assumed that a person could consume a maximum of 150 grams of pure alcohol per day [9]

  • While data have shown that some people may drink more than 150 grams of alcohol on any given day, it seemed implausible that this level of consumption could be maintained during the biological latency period where alcohol consumption leads to the incidence and development of a disease, and mortality from the disease

Read more

Summary

Introduction

When calculating the number of deaths attributable to alcohol consumption (i.e., the number of deaths that would not have occurred if everyone was a lifetime abstainer), alcohol consumption is most often modelled using a capped exposure distribution so that the maximum average daily consumption is 150 grams of pure alcohol. The method used in the 2005/2010 Comparative Risk Analysis (CRA) as part of the Global Burden of Disease (GBD) study to estimate Alcohol-Attributable Fractions (AAFs) (defined as the proportion of deaths that would not have occurred if everyone was a lifetime abstainer; for background on attributable fractions see [6,7] for unadjusted attributable fractions, and [8] for adjusted attributable fractions) assumed that a person could consume a maximum of 150 grams of pure alcohol per day [9]. During the times in the cohort study when participants were drinking, average alcohol consumption per day was approximately 140 grams per participant (for a description of the cohort and main results see [16,17]), making it probable that the heaviest drinkers consumed above 150 grams of pure alcohol during the biological latency period

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call