Abstract

In order to improve the recrystallization resistance and the mechanical properties of molybdenum, TiC particle-reinforcement composites were sintered by SPS. Powders with TiC contents between 6 and 25 vol.% were prepared by high energy ball milling. All powders were sintered both at 1600 and 1800°C, some of sintered composites were annealed in hydrogen for 10h at 1100 up to 1500°C. The powders and the composites were investigated by scanning electron microscopy and XRD. The microhardness and the density of composites were measured, and the densification behavior was investigated. It turns out that SPS produces Mo–TiC composites, with relative densities higher than 97%.The densification behavior and the microhardness of all bulk specimens depend on both the ball milling conditions of powder preparation and the TiC content. The highest microhardness was obtained in composites containing 25 vol.% TiC sintered from the strongest milled powders. The TiC particles prevent recrystallization and grain growth of molybdenum during sintering and also during annealing up to 10h at 1300°C. Interdiffusion between molybdenum and carbide particles leads to a solid solution transition zone consisting of (Ti1−x Mox)Cy carbide. This diffusion zone improves the bonding between molybdenum matrix and TiC particles. A new phase, the hexagonal Mo2C carbide, was detected by XRD measurements after sintering. Obviously, this phase precipitates during cooling from sintering temperature, if (Ti1−x Mox)Cy or molybdenum, are supersaturated with carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.