Abstract
Recent developments in spatial transcriptomics (ST) technology have markedly enhanced the proposed capacity to comprehensively characterize gene expression patterns within tissue microenvironments while crucially preserving spatial context. However, the identification of spatial domains at the single-cell level remains a significant challenge in elucidating biological processes. To address this, SpaInGNN was developed, a sophisticated graph neural network (GNN) framework that accurately delineates spatial domains by integrating spatial location data, histological information, and gene expression profiles into low-dimensional latent embeddings. Additionally, to fully leverage spatial coordinate data, spatial integration using graph neural network (SpaInGNN) refines the graph constructed for spatial locations by incorporating both tissue image distance and Euclidean distance, following a pre-clustering of gene expression profiles. This refined graph is then embedded using a self-supervised GNN, which minimizes self-reconfiguration loss. By applying SpaInGNN to refined graphs across multiple consecutive tissue slices, this study mitigates the impact of batch effects in data analysis. The proposed method demonstrates substantial improvements in the accuracy of spatial domain recognition, providing a more faithful representation of the tissue organization in both mouse olfactory bulb and human lateral prefrontal cortex samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have