Abstract

A random matrix representation is proposed for the two-dimensional (2D) Coulomb gas at inverse temperature β. For 2×2 matrices with Gaussian distribution we analytically compute the nearest-neighbor spacing distribution of complex eigenvalues in radial distance. Because it does not provide such a good approximation as the Wigner surmise in 1D, we introduce an effective β_{eff}(β) in our analytic formula that describes the spacing obtained numerically from the 2D Coulomb gas well for small values of β. It reproduces the 2D Poisson distribution at β=0 exactly, that is valid for a large particle number. The surmise is used to fit data in two examples, from open quantum spin chains and ecology. The spacing distributions of complex symmetric and complex quaternion self-dual ensembles of non-Hermitian random matrices, that are only known numerically, are very well fitted by noninteger values β=1.4 and β=2.6 from a 2D Coulomb gas, respectively. These two ensembles have been suggested as the only two symmetry classes, where the 2D bulk statistics is different from the Ginibre ensemble.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call