Abstract

With the growing popularity of spatial mixture models in cluster analysis, model selection criteria have become an established tool in the search for parsimony. However, the label-switching problem is often inherent in Bayesian implementation of mixture models and a variety of relabeling algorithms have been proposed. We use a space-time mixture of Poisson regression models with homogeneous covariate effects to illustrate that the best model selected by using model selection criteria does not always support the model that is chosen by the optimal relabeling algorithm. The results are illustrated for real and simulated datasets. The objective is to make the reader aware that if the purpose of statistical modeling is to identify clusters, applying a relabeling algorithm to the model with the best fit may not generate the optimal relabeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.