Abstract

AbstractWe study the normed spaces of (equivalence classes of) Banach space-valued functions that are Dobrakov,S* or McShane integrable with respect to a Banach space-valued measure, where the norm is the natural one given by the total semivariation of the indefinite integral. We show that simple functions are dense in these spaces. As a consequence we characterize when the corresponding indefinite integrals have norm relatively compact range. On the other hand, we also determine when these spaces are ultrabornological. Our results apply to conclude, for instance, that the spaces of Birkhoff (respectively McShane) integrable functions defined on a complete (respectively quasi-Radon) probability space, endowed with the Pettis norm, are ultrabornological.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.