Abstract

Author(s): Walsh, Sean | Abstract: The Denjoy integral is an integral that extends the Lebesgue integral and can integrate any derivative. In this paper, it is shown that the graph of the indefinite Denjoy integral $f\mapsto \int_a^x f$ is a coanalytic non-Borel relation on the product space $M[a,b]\times C[a,b]$, where $M[a,b]$ is the Polish space of real-valued measurable functions on $[a,b]$ and where $C[a,b]$ is the Polish space of real-valued continuous functions on $[a,b]$. Using the same methods, it is also shown that the class of indefinite Denjoy integrals, called $ACG_{\ast}[a,b]$, is a coanalytic but not Borel subclass of the space $C[a,b]$, thus answering a question posed by Dougherty and Kechris. Some basic model theory of the associated spaces of integrable functions is also studied. Here the main result is that, when viewed as an $\mathbb{R}[X]$-module with the indeterminate $X$ being interpreted as the indefinite integral, the space of continuous functions on the interval $[a,b]$ is elementarily equivalent to the Lebesgue-integrable and Denjoy-integrable functions on this interval, and each is stable but not superstable, and that they all have a common decidable theory when viewed as $\mathbb{Q}[X]$-modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.