Abstract
This chapter aims at substantiating the abstract theory of Hilbert spaces developed in [GM3]. After introducing the Laplace, heat and wave equations we present the classical method of separation of variables in the study of partial differential equations. Then we introduce Lebesgue’s spaces of psummable functions and we continue with some elements of the theory of Sobolev spaces. Finally, we present some basic facts concerning the notion of weak solution, the Dirichlet principle and the alternative theorem. KeywordsFourier SeriesSummable FunctionNonzero SolutionUnique Weak SolutionGreen FormulaThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have