Abstract

Fuzzy logic controllers are designed for spacecraft hovering flight in a binary asteroid system. The binary asteroid system is modeled as an ellipsoid-sphere system where the spherical harmonics method is adopted to represent the gravitational field of the asteroids. The method to design the fuzzy logic controllers is introduced in detail. Hovering flight about the inner collinear equilibrium point L 1 of binary asteroid Didymos is numerically presented. Detailed steps on roughly estimating the scaling gains of fuzzy logic controllers are also summarized. Numerical simulations are performed to show the effectiveness of the proposed method. Moreover, the aforementioned fuzzy logic controllers can be used for both continuous and impulsive thrusters. The fuzzy controllers with continuous thrust, the fuzzy controllers with fixed thrust, and the other two kinds of sliding-mode controllers are optimized in the same way and compared in the same simulation environment together, to show tremendous advantages of fuzzy logic controllers and continuous thrusters on both control performance and propellant consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call