Abstract
We acquired spectra of 24 LMC planetary nebulae (PNs) in the 1150-3000 A range in order to determine carbon and other ionic abundances. The sample more than doubles the number of LMC PNs with high-quality UV spectra in this wavelength range and whose optical images are available in the Hubble Space Telescope archive. The Space Telescope Imaging Spectrograph was used with a very large aperture to obtain virtually slitless spectra; thus, the monochromatic images in the major nebula emission lines are also available. The analysis of the data shows extremely high quality spectra. This paper presents the emission lines identified and measured and the calculation of the ionic abundances of the emitting carbon and other ions, as well as total carbon abundance. P Cygni profiles have been found in a fraction of the nebulae, and the limiting velocities of the stellar winds estimated. The total carbon abundance can be inferred reliably in most nebulae. We found that the average carbon abundance in round and elliptical PNs is one order of magnitude larger than that of the bipolar PNs, while elliptical and round PNs with a bipolar core have a bimodal behavior. This results confirm that bipolarity in LMC PNs is tightly correlated with high-mass progenitors. When compared with predicted yields, we found that the observed abundance ratio shows a shift toward higher carbon abundances, which may be due to initial conditions assumed in the models not appropriate for LMC PNs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have