Abstract

In many stream monitoring situations, the data arrival rate is so high that it is not even possible to observe each element of the stream. The most common solution is to sub-sample the data stream and use the sample to infer properties and estimate aggregates of the original stream. However, in many cases, the estimation of aggregates on the original stream cannot be accomplished through simply estimating them on the sampled stream, followed by a normalization. We present algorithms for estimating frequency moments, support size, entropy, and heavy hitters of the original stream, through a single pass over the sampled stream.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.