Abstract

There is increasing interest in space domain awareness worldwide, motivating investigation of the use of non-traditional sensors for space surveillance. One such class of sensor is VHF wind profiling radars, which have a low cost relative to other radars typically applied to this task. These radars are ubiquitous throughout the world and may potentially offer complementary space surveillance capabilities to the Space Surveillance Network. This paper updates an initial investigation on the use of Buckland Park VHF wind profiling radars for observing resident space objects in low Earth orbit to further investigate the space surveillance capabilities of the sensor class. The radar was operated during the Australian Defence “SpaceFest” 2019 activity, incorporating new beam scheduling and signal processing functionality that extend upon the capabilities described in the initial investigation. The beam scheduling capability used two-line element propagations to determine the appropriate beam direction to use to observe transiting satellites. The signal processing capabilities used a technique based on the Keystone transform to correct for range migration, allowing the development of new signal processing modes that allow the coherent integration time to be increased to improve the SNR of the observed targets, thereby increasing the detection rate. The results reveal that 5874 objects were detected over 10 days, with 2202 unique objects detected, representing a three-fold increase in detection rate over previous single-beam direction observations. The maximum detection height was 2975.4 km, indicating a capability to detect objects in medium Earth orbit. A minimum detectable RCS at 1000 km of −10.97 dBm2 (0.09 m2) was observed. The effects of Faraday rotation resulting from the use of linearly polarised antennae are demonstrated. The radar’s utility for providing total electron content (TEC) measurements is investigated using a high-range resolution mode and high-precision ephemeris data. The short-term Fourier transform is applied to demonstrate the radar’s ability to investigate satellite rotation characteristics and monitor ionospheric plasma waves and instabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call